Borchers, C.; Arlt, J.; Nowak, C.; Gärtner, F.; Hammerschmidt, M.; Kreye, H.; Volkert, C.; Kirchheim, R.: Influence of element distribution on mechanical properties in the bonding zone of explosively welded steels. Scripta Materialia 199, 113860 (2021)
Kresse, T.; Borchers, C.; Kirchheim, R.: Vacancy-carbon complexes in bcc iron: Correlation between carbon content, vacancy concentration and diffusion coefficient. Scripta Materialia 69 (9), pp. 690 - 693 (2013)
Li, Y.; Choi, P.-P.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R.: Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing. Ultramicroscopy 132, pp. 233 - 238 (2013)
Chen, Y. Z.; Herz, A.; Li, Y. J.; Borchers, C.; Choi, P.; Raabe, D.; Kirchheim, R.: Nanocrystalline Fe–C alloys produced by ball milling of iron and graphite. Acta Materialia 61 (9), pp. 3172 - 3185 (2013)
Herbig, M.; Li, Y.; Morsdorf, L.; Goto, S.; Choi, P.-P.; Kirchheim, R.; Raabe, D.: Recent Advances in Understanding the Structures and Properties of Nanomaterials. Gordon Research Conference on Structural Nanomaterials, The Chinese University of Hong Kong, Hong Kong, China (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.