Jägle, E. A.: Metallische Werkstoffe in der Additiven Fertigung. Workshop "Steels for Additive Manufacturing", Stahlinstitut,VDEh, Düsseldorf, Düsseldorf, Germany (2017)
Jägle, E. A.: Phase transformation phenomena in additively produced alloys. Seminar Materials Science and Technology, Ruhr-Universität Bochum, Bochum, Germany (2017)
Jägle, E. A.: Phase transformation phenomena in additively produced alloys. Werkstoffkolloquium 2016, Deutsches Zentrum für Luft- und Raumfahrt Köln, Köln, Germany (2016)
Jägle, E. A.: Phase transformations in alloys produced by Laser Additive Manufacturing. Spezialseminar Fakultät für Werkstoffwissenschaft und Werkstofftechnologie, TU Bergakademie Freiberg, Freiberg, Germany (2016)
Jägle, E. A.: Solidification cracking during Selective Laser Melting of Inconel 738LC: origins and remedy. Multiscale Materials Modelling conference, Dijon, France (2016)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: Precipitation Reaction in a Maraging Steel during Laser Additive Manufacturing triggered by Intrinsic Heat Treatment. Materials Science and Engineering Congress, Darmstadt, Germany (2016)
Jägle, E. A.: Small variations in powder composition lead to strong differences in part properties. Alloys for Additive Manufacturing Workshop 2016, Düsseldorf, Germany (2016)
Jägle, E. A.: Alloys for Laser Additive Manufacturing: general considerations and precipitation reactions. Seminar at Institut für Werkstoff-Forschung, DLR Köln 2016, Köln, Germany (2016)
Jägle, E. A.: Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing. Seminar at EMPA (Eidgenössische Materialprüfungs- und Forschungsanstalt), Dübendorf, Switzerland (2016)
Jägle, E. A.: Alloys for and by Laser Additive Manufacturing – the basic research perspective. 2nd European Scientific Steel Panel – Metal Additive Manufacturing, Steel Institute VdEH, Düsseldorf, Germany (2015)
Jägle, E. A.: Maraging steel produced by LAM: Influence of processing on precipitation and austenite reversion. Phase Transformations in Inorganic Materials (PTM), Whistler, BC, Canada (2015)
Jägle, E. A.; Tytko, D.; Choi, P.-P.; Raabe, D.: Deformation-induced intermixing in a model multilayer system. Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…