Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Dehm, G.; Ghidelli, M.: Toward engineered thin film metallic glasses with large mechanical properties: effect of composition and nanostructure. Seminar at Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Paris Nord University, Paris, France (2021)
Brognara, A.; Nasri, I. F. M. A.; Bricchi, B. R.; Li Bassi, A.; Gauchotte, C.; Ghidelli, M.; Lidgi-Guigui, N.: Detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles. Applied Nanotechnology and Nanoscience International Conference – ANNIC 2019, Paris, France (2019)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Ghidelli, M.; Dehm, G.: On the mechanical properties and thermal stability of ZrxCu100-x thin film metallic glasses with different compositions. Nanobrücken 2021 - Nanomechanical Testing Conference virtual event, Düsseldorf, Germany (2021)
Brognara, A.; Best, J. P.; Djemia, P.; Faurie, D.; Ghidelli, M.; Dehm, G.: Effect of composition on mechanical properties and thermal stability of ZrCu thin film metallic glasses. European Materials Research Society (E-MRS) Spring Meeting 2021, Virtual Conference, Strasbourg, France (2021)
Devulapalli, V.; Frommeyer, L.; Ghidelli, M.; Liebscher, C.; Dehm, G.: From epitaxially grown thin films to grain boundary analysis in Cu and Ti. International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, IAMNano, Düsseldorf, Germany (2019)
Brognara, A.: Design of ZrCu thin film metallic glasses with tailored mechanical properties through control of composition and nanostructure. Dissertation, RUB Bochum, Bochum, Germany (2025)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
Grain boundaries are one of the most prominent defects in engineering materials separating different crystallites, which determine their strength, corrosion resistance and failure. Typically, these interfaces are regarded as quasi two-dimensional defects and controlling their properties remains one of the most challenging tasks in materials…
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…