Fujita, N.; Igi, S.; Diehl, M.; Roters, F.; Raabe, D.: The through-process texture analysis of plate rolling by coupling finite element and fast Fourier transform crystal plasticity analysis. Modelling and Simulation in Materials Science and Engineering 27, 085005 (2019)
Diehl, M.; Kertsch, L.; Traka, K.; Helm, D.; Raabe, D.: Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 755, pp. 295 - 306 (2019)
Wang, D.; Diehl, M.; Roters, F.; Raabe, D.: On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity. Mechanics of Materials 125, pp. 70 - 79 (2018)
Diehl, M.: Review and outlook: mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale. MRS Communications 7 (4), pp. 735 - 746 (2017)
Diehl, M.; Groeber, M.; Haase, C.; Roters, F.; Raabe, D.: Identifying Structure–Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach. JOM-Journal of the Minerals Metals & Materials Society 69 (5), pp. 848 - 855 (2017)
Diehl, M.; Wicke, M.; Shanthraj, P.; Roters, F.; Brueckner-Foit, A.; Raabe, D.: Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation. JOM-Journal of the Minerals Metals & Materials Society 69 (5), pp. 872 - 878 (2017)
Zhang, H.; Diehl, M.; Roters, F.: A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations. International Journal of Plasticity 80, pp. 111 - 138 (2016)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Perlado, J. M.; Marian, J.: Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calcula- tions. International Journal of Plasticity 78, pp. 242 - 265 (2016)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.: Neighborhood influences on stress and strain partitioning in dual-phase microstructures. An investigation on synthetic polycrystals with a robust spectral-based numerical method. Meccanica 51 (2), pp. 429 - 441 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.