Khorrami, M. S.; Mianroodi, J. R.; Svendsen, B.: Finite-deformation phase-field microelasticity with application to dislocation core and reaction modeling in fcc crystals. Journal of the Mechanics and Physics of Solids 164, 104897 (2022)
Gierden, C.; Kochmann, J.; Waimann, J.; Svendsen, B.; Reese, S.: A Review of FE-FFT-Based Two-Scale Methods for Computational Modeling of Microstructure Evolution and Macroscopic Material Behavior. Archives of Computational Methods in Engineering 29, pp. 4115 - 4135 (2022)
Gierden, C.; Waimann, J.; Svendsen, B.; Reese, S.: A geometrically adapted reduced set of frequencies for a FFT-based microstructure simulation. Computer Methods in Applied Mechanics and Engineering 386, 114131 (2021)
Gierden, C.; Waimann, J.; Svendsen, B.; Reese, S.: FFT-based simulation using a reduced set of frequencies adapted to the underlying microstructure. Computer Methods in Materials Science 21 (1), pp. 51 - 58 (2021)
Shanthraj, P.; Liu, C.; Akbarian, A.; Svendsen, B.; Raabe, D.: Multi-component chemo-mechanics based on transport relations for the chemical potential. Computer Methods in Applied Mechanics and Engineering 365, 113029 (2020)
Mianroodi, J. R.; Svendsen, B.: Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals. Materials 13 (10), 2238 (2020)
Alipour, A.; Reese, S.; Svendsen, B.; Wulfinghoff, S.: A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 (2235), 20190581 (2020)
Svendsen, B.: Constitutive relations for polar continua based on statistical mechanics and spatial averaging. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 (2233), 20190407 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…