Zhong, Q.; Rohwerder, M.; Shi, L.: The effect of ionic penetration on semiconducting behaviour of temporarily protective oil coating on the surface of AISI stainless steel. Materials and Corrosion-Werkstoffe und Korrosion 56 (9), pp. 597 - 605 (2005)
Zhong, Q.; Rohwerder, M.; Chen, W.; Liu, D.: Fuzzy cluster analysis constructed by numeric genetic algorithm (NGA) and its use in the evaluation of heterogeneity of temporarily protective oil coating. Materials and Corrosion-Werkstoffe und Korrosion 55 (12), pp. 930 - 934 (2004)
Zhong, Q.; Rohwerder, M.; Zhang, Z.: Study of lubricants and their effect on the anti-corrosion performance as temporarily protective oil coatings. Surface and Coatings Technology 185 (2-3), pp. 234 - 239 (2004)
Zhong, Q.; Rohwerder, M.; Zhao, Z.; Jin, Z.: Semiconducting behavior of temporarily protective oil coating on the surface of AISI 304 stainless steel in 5% Na2SO4 solution during its degradation. Journal of the Electrochemical Society 151 (7), pp. B446 - B452 (2004)
Zhong, Q.; Xu, N.; Zhou, G.; Rohwerder, M.: Study of electronic-ionic conducting transformation of temporarily protective oil coating in salt solution. Materials and Corrosion-Werkstoffe und Korrosion 54 (2), pp. 97 - 105 (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…