Jägle, E. A.: Impact of the process gas atmosphere in Laser Additive Manufacturing – desired and undesired effects. Alloys for Additive Manufacturing Symposium 2018, Sheffield, UK (2018)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: Preventing the Coarsening of Al3Sc Precipitates by the Formation of a Zr-rich Shell During Laser Metal Deposition. TMS2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Jägle, E. A.: Ex-situ and in-situ heat treatment of alloys during Laser Additive Manufacturing. AWT Kolloquium, Institut für Werkstofftechnik, Bremen, Germany (2017)
Jägle, E. A.: Additive Manufacturing and 3D Printing - What’s beyond the hype? Institute Lecture at Indian Institute of Technology Roorkee, Roorkee, India (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Plenary presentation, Advances in Materials & Processing: Challenges and Opportunities, Indian Institute of Technology Roorkee, Roorkee, India (2017)
Jägle, E. A.: Exploiting the Intrinsic Heat Treatment during Laser Additive Manufacturing to trigger Precipitation Reactions. International Mechanical Engineering Congress & Exposition (IMECE), Tampa, FL, USA (2017)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: In-process precipitation strengthening in Al–Sc during Laser Metal Deposition by exploiting the Intrinsic Heat Treatment. Alloys for Additive Manufacturing Symposium, Zürich, Switzerland (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Seminar talk at Culham Center for Fusion Energy, Oxford, Oxford, UK (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Laser-Kolloquium at Fraunhofer Institut für Lasertechnik, Aachen, Aachen, Germany (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Seminar talk at Institut für Umformtechnik und Leichtbau, TU Dortmund, Dortmund, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…