Gault, B.: An introduction to atom probe tomography: from fundamentals to atomic-scale insights into engineering materials. Rolls Royce Lunch Time Seminar, Derby, UK (2020)
Kwiatkowski da Silva, A.; Ponge, D.; Gault, B.; Raabe, D.: The Relevance of Interfacial Segregation for Controlling Second Phase Precipitation in Advanced High Strength Steels. TMS 2020 Annual Meeting & Exhibition, San Diego, CA, USA (2020)
Gault, B.: Can machine learning bring atom probe microscopy closer to analytical atomic-scale tomography. 12th International Symposium on Atomic Level Characterizations for New Materials and Devices (ALC 19), Kyoto, Japan (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…