Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Delft, The Netherlands (2009)
Salgin, B.; Rohwerder, M.: A New Approach to Determine Ion Mobility Coefficients for Delamination Scenarios. electrochem09 and 50th Corrosion Science Symposium, Manchester, UK (2009)
Salgin, B.; Rohwerder, M.: A New Approach to Determine Ion Mobility Coefficients for Delamination Scenarios. 60th Annual Meeting of the International Meeting of the International Society of Electrochemistry, Beijing, China (2009)
Salgin, B.; Rohwerder, M.: Effects of Semiconducting Properties of Surface Oxide on the Delamination at the Polymer/Zinc Interface. SurMat Seminar, Kleve, Germany (2008)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i Conference 2011, Noordwijkerhout, The Netherlands (2011)
Salgin, B.; Rohwerder, M.: Scanning Kelvin Probe (SKP) as a tool for monitoring ion mobility on insulators. M2i Conference 2009, Noordwijkerhout, The Netherlands (2009)
Salgin, B.; Rohwerder, M.: Effects of the Semiconducting Properties of Surface Oxide on the Delamination at the Polymer/Metal Interface. 2nd International IMPRS-SurMat Workshop, Bochum, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.