Sarma, D.; Pegu, D.; Saikia, U.; Sahariah, M. B.: Exploring the effect of Ti on He clustering in CuZr metallic alloy. Physica Scripta 100 (7), 075918 (2025)
Kamachali, R. D.; Wallis, T.; Ikeda, Y.; Saikia, U.; Ahmadian, A.; Liebscher, C.; Hickel, T.; Maass, R.: Giant segregation transition as origin of liquid metal embrittlement in the Fe-Zn system. Scripta Materialia 238, 115758 (2024)
Saikia, U.; Sahariah, M. B.; Dutta, B.; Pandey, R.: Structure, stability and defect energetics of interfaces formed between conventional and transformed phases in Cu–Nb layered nanocomposite. Physica Scripta 98 (6), 065959 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…