Dehm, G.; Edongué, H.; Wagner, T. A.; Oh, S. H.; Arzt, E.: Obtaining different orientation relationships for Cu films grown on (0001) α-Al2O3 substrates by magnetron sputtering. Zeitschrift für Metallkunde 96 (3), pp. 249 - 254 (2005)
Inkson, B. J.; Dehm, G.; Wagner, T. A.: Thermal stability of Ti and Pt nanowires manufactured by Ga+ focused ion beam. Journal of Microscopy 214 (3), pp. 252 - 260 (2004)
Dehm, G.; Inkson, B. J.; Wagner, T. A.: Growth and microstructural stability of epitaxial Al films on (0001) α-Al2O3 substrates. Acta Materialia 50 (20), pp. 5021 - 5032 (2002)
Inkson, B. J.; Dehm, G.; Wagner, T. A.: In-situ TEM observation of dislocation motion in thermally strained Al nanowires. Acta Materialia 50 (20), pp. 5033 - 5047 (2002)
Dehm, G.; Wagner, T. A.; Balk, T. J.; Arzt, E.; Inkson, B. J.: Plasticity and interfacial dislocation mechanisms in epitaxial and polycrystalline Al films constrained by substrates. Journal of Materials Science & Technology 18 (2), pp. 113 - 117 (2002)
Oh, S. H.; Scheu, C.; Dehm, G.; Wagner, T. A.; Rühle, M.; Lee, H. J.: Direct atomic scale observation of dynamic alumina-aluminum solid-liquid interfaces. In: The 8th Asia-Pacific Conference on Electron Microscopy (8APEM): In Conjunction with the 60th Annual Meeting of the Japanese Society of Microscopy, pp. 671 - 672. 8th Asia-Pacific Conference on Electron Microscopy (8APEM), Kanazawa, Japan, June 07, 2004 - June 11, 2004. Die Japanische Gesellschaft für Mikroskopie, Uchinada-mati (Isikawa-ken), Japan (2004)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.