Vlasak, R.; Klueppel, I.; Grundmeier, G.: Combined EIS and FTIR-ATR study of water uptake and diffusion in polymer films on semiconducting electrodes. Electrochim. Acta 52 (28), pp. 8075 - 8080 (2007)
Posner, R.; Giza, G.; Vlasak, R.; Grundmeier, G.: Electrochemical and Spectroscopic Analysis of Ion Transport Processes along Polymer/Oxide/Metal Interfaces in Corrosive and Non-Corrosive Atmosphere. Euradh 2008 - Adhesion '08, St Catherine's College, Oxford, UK (2008)
Grundmeier, G.; Valtiner, M.; Vlasak, R.: Adhesion promoting films and monolayers at polymer/oxide/metal interfaces. NACE2008 RIP Session Coatings and Inhibitors, New Orleans, LA, USA (2008)
Grundmeier, G.; Posner, R.; Vlasak, R.: Combined Spectroscopic and Electrochemical Studies of Water and Ion Transport along Polymer/Oxide/Metal Interphases. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Grundmeier, G.; Fink, N.; Giza, M.; Popova, V.; Vlasak, R.; Wapner, K.: Application of combined spectroscopic, electrochemical and microscopic techniques for the understanding of adhesion and de-adhesion at polymer/metal interfaces. 24. Spektrometertagung, Dortmund, Germany (2005)
Vlasak, R.; Grundmeier, G.: Surface-Enhanced Infrared Spectroscopy of Ultra-Thin Inorganic and Organic Films. 104. Hauptversammlung der Deutschen Bunsen-Gesellschaft für Physikalische Chemie e.V., Frankfurt a. M., Germany (2005)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.