Jovičević-Klug, M.; Brondin, C. A.; Caretta, A.; Bonnekoh, C.; Gossing, F.; Vogel, A.; Rieth, M.; McCord, J.; Rohwerder, M.; Jovičević-Klug, P.: Suppression of Cr nanoclusters and enrichments in Fe–Cr based alloys with cryogenic processing for future energy sector. Journal of Materials Research and Technology 36, pp. 9262 - 9273 (2025)
Khayatan, N.; Prabhakar, J. M.; Jalilian, E.; Madelat, N.; Terryn, H.; Rohwerder, M.: On the rate determining step of cathodic delamination of delamination-resistant organic coatings. Corrosion Science 239, 112396 (2024)
Azzam, W.; Subaihi, A.; Rohwerder, M.; Bashir, A.; Terfort, A.; Zharnikov, M.: Odd-even effects in aryl-substituted alkanethiolate SAMs: nonsymmetrical attachment of aryl unit and its impact on the SAM structure. Physical Chemistry Chemical Physics 26 (9), pp. 7563 - 7572 (2024)
Ravikumar, A.; Höche, D.; Feiler, C.; Lekka, M.; Salicio-Paz, A.; Rohwerder, M.; Prabhakar, J. M.; Zheludkevich, M.: Exploring the Effect of Microstructure and Surface Recombination on Hydrogen Effusion in Zn–Ni-Coated Martensitic Steels by Advanced Computational Modeling. Steel Research International 95 (2), 2300353 (2024)
Venkatachalam, D.; Govindaraj, Y.; Prabhakar, J. M.; Ganapathi, A.; Sakairi, M.; Rohwerder, M.; Neelakantan, L.: Smart release of turmeric as a potential corrosion inhibitor from a pH-responsive polymer encapsulated highly ordered mesoporous silica containers. Surfaces and Interfaces 45, 103883 (2024)
Jovičević-Klug, P.; Jovičević-Klug, M.; Thormählen, L.; McCord, J.; Rohwerder, M.; Godec, M.; Podgornik, B.: Austenite reversion suppression with deep cryogenic treatment: A novel pathway towards 3rd generation advanced high-strength steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 873, 145033 (2023)
Narasimha Sasidhar, K.; Zhou, X.; Rohwerder, M.; Ponge, D.: On the phase transformation pathway during localized grain boundary oxidation in an Fe-10 at% Cr alloy at 200°C. Corrosion Science 214, 111016 (2023)
Jovičević-Klug, P.; Rohwerder, M.: Sustainable New Technology for the Improvement of Metallic Materials for Future Energy Applications. Coatings 13 (11), 1822 (2023)
Jovičević-Klug, P.; Jovičević-Klug, M.; Tegg, L.; Seidler, D.; Thormählen, L.; Parmar, R.; Amati, M.; Gregoratti, L.; Cairney, J.; McCord, J.et al.; Rohwerder, M.; Podgornik, B.: Correlative surface and bulk analysis of deep cryogenic treatment influence on high-alloyed ferrous alloy. Journal of Materials Research and Technology 21, pp. 4799 - 4810 (2022)
Azzam, W.; Subaihi, A.; Rohwerder, M.; Zharnikov, M.; Bashir, A.: Polymorphism and Building-Block-Resolved STM Imaging of Self-Assembled Monolayers of 4-Fluorobenzenemethanethiol on Au(111). ChemPhysChem 23 (19), e202200347 (2022)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.