Özcan, Ö.; Pohl, K.; Keil, P.; Grundmeier, G.: Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates. Electrochemistry Communications 13 (8), pp. 837 - 839 (2011)
Özcan, Ö.; Blumenau, A. T.; Grundmeier, G.: A combined experimental-computational approach: Revealing the organosilane to zinc oxide binding mechanism. Euradh 2008 - Adhesion '08, St Catherine's College, Oxford, UK (2008)
Özcan, Ö.; Blumenau, A. T.; Grundmeier, G.: Adsorption of Organosilanes on ZnO Surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Germany (2008)
Thissen, P.; Özcan, Ö.; Torres, E.; Diesing, D.; Grundmeier, G.: Combining Monte Carlo Kinetics and Density Functional Theory to simulate Temperature Programmed Desorption. American Vacuum Society 54th International Symposium, Seattle, WA, USA (2007)
Özcan, Ö.; Thissen, P.; Diesing, D.; Blumenau, A. T.; Grundmeier, G.: A Monte Carlo - DFT Study: Adsorption of organosilanes on polar ZnO(0001) surfaces. 43rd Symposium on Theoretical Chemistry, Saarbrücken, Germany (2007)
Özcan, Ö.; Thissen, P.; Blumenau, A. T.; Grundmeier, G.: Adsorption of organosilane molecules on polar ZnO (0001) surfaces. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Özcan, Ö.; Blumenau, A. T.; Grundmeier, G.: Adsorption of Organosilanes on ZnO Surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Özcan, Ö.; Thissen, P.; Blumenau, A. T.; Grundmeier, G.: Adsorption of organosilane molecules on polar ZnO(0001) surfaces. 12th European Conference on Applications of Surface and Interface Analysis (ECASIA'07), Brussels, Belgium (2007)
Thissen, P.; Özcan, Ö.; Diesing, D.; Grundmeier, G.: Monte Carlo Simulation of Temperature Programmed Desorption Including Binding Energies and Frequency Factors Derived by DFT Calculations. 43rd Symposium on Theoretical Chemistry, Saarbrücken, Germany (2007)
Özcan, Ö.: Synthesis, Characterisation and Functionalisation of ZnO Nanorods on Metals. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…