Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Ductility of Gamma-TiAl-Based Microstructures in the Light of Deformation Mode Interaction-Crystal Plasticity Modeling and Micro-Mechanical Experiments. MRS Fall Conference 2008, Boston, MA, USA (2008)
Demir, E.; Raabe, D.; Zaefferer, S.: Quantification of Geometrically Necessary Dislocations Beneath Small Indents of Different Depths Using EBSD Tomography. MRS Fall Conference 2008, Boston, MA, USA (2008)
Dmitrieva, O.; Zaefferer, S.; Raabe, D.: 3D EBSD Investigation of Orientation Patterning Phenomena in Weakly Deformed Cu Single Crystals. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Fanta, A. B.; Zaefferer, S.; Thomas, I.; Raabe, D.: Relationship Between Microstructure and Texture Evolution during Cold Deformation of TWIP-Steels. 15 th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Frommert, M.; Zobrist, C.; Raabe, D.; Zaefferer, S.; Lahn, L.; Böttcher, A.: Measurement of the Texture Sharpness in Grain-Oriented Electrical Steels. 15th International Conference on the Texture of Materials (ICOTOM 2008), Pittsburgh, PA, USA (2008)
Liu, T.; Raabe, D.; Zaefferer, S.; Mao, W.: On the Role of Nucleation during Microtexture Evolution in CVD Deposition of Diamond Thin Films. 15th International Conference on the Textures of Materials (ICOTOM 15), Carnegie Mellon University Center, Pittsburgh, PA, USA (2008)
Liu, T.; Raabe, D.; Zaefferer, S.; Mao, W.: 3D EBSD Texture Study on CVD Diamond Films. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Romano, P.; Zaefferer, S.; Raabe, D.: Use of Orientation Gradients for the Identification of Different Microconstituents in Multiphase Steels. 15 th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Schestakow, I.; Yi, S. B.; Zaefferer, S.: On the Role of Twin-Intersections for the Formation of the Recrystallisation Texture in Pure Magnesium. 15 th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Wu, G.; Zaefferer, S.: Developement of a TEM-based Orientation Microscopy System and its Application to Study of Microstructure and Texture of Nanocrystalline NiCo Samples. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Zaafarani, N.; Roters, F.; Zaefferer, S.; Raabe, D.: Tomographic 3D EBSD Analysis of Deformation and Rotation Patterns around Nanoindents. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Zaefferer, S.: Study on the Recrystallisation Nucleation Mechanisms of Heavily Deformed Fe36% Ni by High Resolution 3-Dimensional Orientation Microscopy. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Zambaldi, C.; Wright, S. I.; Zaefferer, S.: Determination of Texture and Microstructure of Ordering Domains in gamma-TiAl. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Zambaldi, C.; Zaefferer, S.; Roters, F.; Raabe, D.: Micro-mechanical implications of TiAl order domains. The annual plenary meeting of the EU sixth framework programme IMPRESS integrated project, Camogli, Italy (2008)
Zaefferer, S.: SEM and TEM-based orientation microscopy and Monte-Carlo modelling: A toolbox to study recrystallisation nucleation processes. Annual Meeting of the Canadian Microscopical Society 2008, Montreal, Canada (2008)
Zambaldi, C.; Zaefferer, S.; Roters, F.: Order domains in intermetallic TiAl - EBSD characterization and crystal plasticity modeling. GLADD meeting, University of Gent, Gent, Belgium (2008)
Zaefferer, S.: SEM and TEM-based orientation microscopy and Monte-Carlo modelling: A toolbox to study recrystallisation nucleation processes. EBSD 2008, Sheffield, UK (2008)
Frommert, M.; Zaafarani, N.; Zaefferer, S.: Application of 3-dimensional orientation microscopy to study the microstructure of different heavily deformed metals. DGM-DVM Arbeitskreistreffen "Mikrostrukturuntersuchungen im REM", Ilmenau, Germany (2008)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.