Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Micropillar Compression of Hexagonal and Cubic NbCo2 Laves Phases. Nanomechanical Testing in Materials Research and Development VI, Dubrovnik, Croatia (2017)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Deformation of Micropillars of Cubic and Hexagonal NbCo2 Laves Phases under Uniaxial Compression at Room Temperature. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany (2017)
Arigela, V. G.; Kirchlechner, C.; Dehm, G.: Setup of a microscale high temperature loading rig for micro-fracture mechanics. GRi Mecano General meeting, Toulouse, France (2017)
Arigela, V. G.; Kirchlechner, C.; Janisch, R.; Hartmaier, A.; Dehm, G.: Setup of a microscale fracture apparatus to study the interface behaviour in materials at high temperatures. Materials Day 2016, Ruhr Universitat Bochum, Bochum, Germany (2016)
Malyar, N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Dislocation slip transfer at Cu grain boundaries analyzed by µLaue diffraction. Gordon Research Seminar Thin Film & Small Scale Mechanical Behavior, Lewiston, ME, USA (2016)
Malyar, N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Dislocation slip transfer at Cu grain boundaries analyzed by µLaue diffraction. Gordon Research Conference Thin Film & Small Scale Mechanical Behavior, Best Poster Prize, Lewiston, ME, USA (2016)
Peter, N. J.; Kirchlechner, C.; Liebscher, C.; Dehm, G.: Effect of the atomistic grain boundary structure on dislocation interaction in copper. Gordon Research Conference (GRC) 2016, Thin Film & Small Scale Mechanical Behavior
, Lewiston, ME, USA (2016)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Intermetallic Phases. Int. Conf. The Materials Chain: From Discovery to Production, University Bochum, Bochum, Germany (2016)
Peter, N. J.; Kirchlechner, C.; Liebscher, C.; Dehm, G.: Beam induced atomic migration at Ag containing nanofacets at an asymmetric Cu grain boundary. European Microscopy Congress (EMC) 2016
, Lyon, France (2016)
Malyar, N.; Jaya, B. N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Orientation dependence of dislocation transmission through twin-boundaries studied by in situ μLaue diffraction. ECI - Nano- and Micromechanical Testing in Materials Research and Development V, Albufeira, Portugal (2015)
Malyar, N.; Jaya, B. N.; Dehm, G.; Kirchlechner, C.: Dislocation transmission in bi-crystalline micro pillars studied by in situ SEM and in situ µLaue diffraction. Workshop „Understanding Grain Boundary Migration – Theory Meets Experiment”, Günzburg, Germany (2015)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves Phases. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Fracture toughness testing of brittle materials at the micron-scale. Thin Film & Small Scale Mechanical Behavior - Gordon Research Conference, Boston, MA, USA (2014)
Djaziri, S.; Li, Y.; Goto, S.; Kirchlechner, C.; Raabe, D.; Dehm, G.: Microstructural characterization of cold-drawn pearlitic steel wires at the nanometer scale. The Thin Film & Small Scale Mechanical Behavior Gordon Research Conference, Waltham, MA, USA (2014)
Malyar, N.; Dehm, G.; Kirchlechner, C.: Dislocation motion in bi-crystals with a specific grain boundary orientation studied by in situ SEM and in situ µLaue diffraction. Conference: Thin Film & Small Scale Mechanical Behavior Gordon Research , Waltham, MA, USA (2014)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…