Frommeyer, G.; Rablbauer, R.: High temperature materials based on the intermetallic compound NiAl reinforced by refractory metals for advanced energy conversion technologies. Steel Research International 79, pp. 507 - 513 (2008)
Deges, J.; Rablbauer, R.; Frommeyer, G.; Schneider, A.: Observation of boron enrichments in a heat treated quasibinary hypoeutectic NiAl-HfB2 alloy by means of atom probe field-ion microscopy (APFIM). Surface and Interface Analysis 39, pp. 251 - 156 (2007)
Frommeyer, G.; Kowalski, W.; Rablbauer, R.: Structural superplasticity in a fine-grained eutectic intermetallic NiAl-Cr alloy. Metallurgical and Materials Transactions A 37A, pp. 3511 - 3517 (2007)
Rablbauer, R.; Fischer, R.; Frommeyer, G.: Mechnical properties of NiAl–Cr alloys in relation to microstructure and atomic defects. Zeitschrift für Metallkunde 95 (6), pp. 525 - 534 (2004)
Rablbauer, R.; Frommeyer, G.; Stein, F.: Determination of the constitution of the quasi-binary eutectic NiAl–Re system by DTA and microstructural investigations. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 343, pp. 301 - 307 (2003)
Frommeyer, G.; Rablbauer, R.: High temperature resistant intermetallic Ni-Al-based alloys with refractory metals Cr, Mo, Re. In: Mat. Res. Soc. Symp. Proc., pp. 193 - 207. 2002 MRS Fall Meeting, Boston, MA, USA, December 02, 2002 - December 06, 2002. (2003)
Frommeyer, G.; Rablbauer, R.; Fischer, R.; Deges, J.: Properties of Refractory NiAl-based Alloys in Relation to Atomic Defects and Microstructures. International Conference on Processing, Manufacturing of Advanced Materials -Thermec 2009, Berlin, Germany (2009)
Frommeyer, G.; Brüx, U.; Brokmeier, K.; Rablbauer, R.: Development, Microstructures and Properties of Advanced High-Strength and Supra-Ductile Light-Weight Steels. International Conference on Processing and Manufacturing of Advanced Materials -Thermec 2009, Berlin, Germany (2009)
Frommeyer, G.; Rablbauer, R.: Ultrahigh strength and supraductile steels for automotive applications. SCT 08 Steel in Cars and Trucks, Wiesbaden, Germany (2008)
Frommeyer, G.; Rablbauer, R.; Brokmeier, K.: Das Potential von hochfesten und supraduktilen Fe–Mn–Al–Si–C Stählen für den zukünftigen Karosserieleichtbau - Stand der Technik und Entwicklungstrends. WAMM World Automotive Materials Meeting 2008, Bad Nauheim/Frankfurt, Germany (2008)
Frommeyer, G.; Stein, F.; Knippscheer, S.; Rablbauer, R.: Development of high-temperature titanium and nickel aluminium intermetallics based on microgravity processing. Space for Innovation - Industry Forum for Material Research and Microgravity, Fachtagung "Materialforschung und Schwerelosigkeit für Industrieanwendungen", MPI für Eisenforschung (2008)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.