Godara, A.; Raabe, D.; Bergmann, I.; Putz, R.; Müller, U.: Influence of additives on the global mechanical behavior and the microscopic strain localization in wood reinforced polypropylene composites during tensile deformation investigated using digital image correlation. Composites Science and Technology 69 (2), pp. 139 - 146 (2009)
Godara, A.; Raabe, D.: Microstrain localisation measurement in epoxy FRCs during plastic deformation using a digital image correlation technique coupled with scanning electron microscopy. Nondestructive Testing and Evaluation 3, pp. 229 - 240 (2008)
Godara, A.; Raabe, D.: Influence of fiber orientation on global mechanical behavior and mesoscale strain localization in a short glass-fiber-reinforced epoxy polymer composite during tensile deformation investigated using digital image correlation. Composites Science and Technology 67 (11-12), pp. 2417 - 2427 (2007)
Godara, A.; Raabe, D.; Green, S.: The influence of sterilization processes on the micromechanical properties of carbon fiber reinforced PEEK composites for bone-implant applications. Acta Biomaterialia 3 (2), pp. 209 - 220 (2007)
Godara, A.; Raabe, D.; Van Puyvelde, P.; Moldenaers, P.: Influence of flow on the global crystallization kinetics of iso-tactic polypropylene. Polymer Testing 25 (4), pp. 460 - 469 (2006)
Godara, A.; Raabe, D.: Mesoscale simulation of the kinetics and topology of spherulite growth during crystallization of isotactic polypropylen (iPP) by using a cellular automaton. (2005)
Godara, A.; Raabe, D.: Micromechanical behavior of thermoplastic matrix composites by digital image correlation. In: Proc. Of the 27th International SAMPE Europe conference, pp. 121 - 126. Proc. Of the 27th International SAMPE Europe conference, Paris, March 27, 2006 - March 29, 2006. (2006)
Godara, A.; Raabe, D.; Green, S.: The influence of sterilization processes on the micromechanical properties of carbon fiber reinforced PEEK composites for bone-implant applications. 2006 MRS Fall Conference, Boston, MA, USA (2006)
Godara, A.; Raabe, D.: Strain localization and microstructure evolution during plastic deformation of fiber reinforced polymer composites investigated by digital image correlation. Department Seminar, MPIE, Düsseldorf (Germany) (2006)
Godara, A.; Raabe, D.: Micromechanical behavior of thermoplastic matrix composites by digital image correlation. SAMPE Europe - Society for the Advancement of Material and Process Engineering (SAMPE 2006), Paris (2006)
Godara, A.; Raabe, D.: Influence of sterilization on the microscopic strain localization in carbon fiber reinforced PEEK composites for bone-implant applications investigated by digital image correlation. MRS Fall Meeting, Boston, MA, USA (2006)
Raabe, D.; Godara, A.: Published in conference proceedings: Strain localization and microstructure evolution during plastic deformation of fiber reinforced polymer composites. International Workshop on Thermoplastic Matrix Composites (THEPLAC 2005), Lecce, Italy (2005)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.