Özcan, Ö.; Pohl, K.; Keil, P.; Grundmeier, G.: Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates. Electrochemistry Communications 13 (8), pp. 837 - 839 (2011)
Özcan, Ö.; Blumenau, A. T.; Grundmeier, G.: A combined experimental-computational approach: Revealing the organosilane to zinc oxide binding mechanism. Euradh 2008 - Adhesion '08, St Catherine's College, Oxford, UK (2008)
Özcan, Ö.; Blumenau, A. T.; Grundmeier, G.: Adsorption of Organosilanes on ZnO Surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Germany (2008)
Thissen, P.; Özcan, Ö.; Torres, E.; Diesing, D.; Grundmeier, G.: Combining Monte Carlo Kinetics and Density Functional Theory to simulate Temperature Programmed Desorption. American Vacuum Society 54th International Symposium, Seattle, WA, USA (2007)
Özcan, Ö.; Thissen, P.; Diesing, D.; Blumenau, A. T.; Grundmeier, G.: A Monte Carlo - DFT Study: Adsorption of organosilanes on polar ZnO(0001) surfaces. 43rd Symposium on Theoretical Chemistry, Saarbrücken, Germany (2007)
Özcan, Ö.; Thissen, P.; Blumenau, A. T.; Grundmeier, G.: Adsorption of organosilane molecules on polar ZnO (0001) surfaces. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Özcan, Ö.; Blumenau, A. T.; Grundmeier, G.: Adsorption of Organosilanes on ZnO Surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Özcan, Ö.; Thissen, P.; Blumenau, A. T.; Grundmeier, G.: Adsorption of organosilane molecules on polar ZnO(0001) surfaces. 12th European Conference on Applications of Surface and Interface Analysis (ECASIA'07), Brussels, Belgium (2007)
Thissen, P.; Özcan, Ö.; Diesing, D.; Grundmeier, G.: Monte Carlo Simulation of Temperature Programmed Desorption Including Binding Energies and Frequency Factors Derived by DFT Calculations. 43rd Symposium on Theoretical Chemistry, Saarbrücken, Germany (2007)
Özcan, Ö.: Synthesis, Characterisation and Functionalisation of ZnO Nanorods on Metals. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…