Zaefferer, S.; Chen, J.; Konijnenberg, P.: A study on origin and nature of shear bands in cold rolled Mg-3Y alloy using 3D EBSD. 9th Intern. Conference on Magnesium alloys and their applications, Vancouver, Canada (2012)
Konijnenberg, P.; Zaefferer, S.; Lee, S.-B.; Rollett, A. D.; Rohrer, G.; Raabe, D.: Advanced Methods and Tools for Reconstruction and Analysis of Grain Boundaries from 3D-EBSD Data Sets. International Conference on the Textures of Materials, ICOTOM 16, Bombay, India (2011)
Konijnenberg, P.; Zaefferer, S.; Raabe, D.: Advanced Reconstruction and Analysis of Grain Boundaries from 3D-EBSD Data Sets. MRS Fall Meeting 2011, Boston, MA, USA (2011)
Konijnenberg, P.; Zaefferer, S.; Raabe, D.: Advanced Reconstruction and Analysis of Grain Boundaries from 3D-EBSD Data Sets. 3D Microstructure Meeting 2011, Saarbrücken, Germany (2011)
Zaefferer, S.; Jäpel, T.; Tasan, C. C.; Konijnenberg, P.: Detailed observation of martensite transformation and twinning in TRIP and TWIP steels using advanced SEM diffraction techniques. ICOMAT 2011, Osaka, Japan (2011)
Stechmann, G.; Zaefferer, S.; Konijnenberg, P. J.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Port Elizabeth, South Africa (2016)
Konijnenberg, P. J.; Demir, E.; Zaefferer, S.: Application of 3D EBSD-based orientation microscopy to the observation of damage in TRIP steels. Advanced methods in EBSD 2010, Saint Etienne, France (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…