Bieler, T. R.; Crimp, M. A.; Ma, A.; Roters, F.; Raabe, D.: A Slip Interaction Based Measure of Damage Nucleation in Grain Boundaries. 3rd International Conference on Multiscale Materials Modeling, Freiburg, Germany (2006)
Zambaldi, C.; Roters, F.; Raabe, D.: Spherical indentation modeling for the investigation of primary recrystallization in a single-crystal nickel-base superalloy. Plasticity, Halifax, Canada (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.; Zambaldi, C.: 3D EBSD characterization and crystal plasticity FE simulation of the texture and microstructure below a nanoindent in Cu. Plasticity Conference 2006, Halifax, Canada (2006)
Roters, F.: Mapping the crystal orientation distribution function to discrete orientations in crystal plasticity finite element forming simulations of bulk materials. International Conference on Aluminium Alloys ICAA10, Vancouver, Canada (2006)
Roters, F.; Ma, A.; Zaafarani, N.; Raabe, D.: Crystal plasticity FEM modeling at large scales and at small scales. GAMM annual meeting, Berlin, Germany (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.: Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. DPG Frühjahrstagung, Dresden, Germany (2006)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive law for BCC materials in crystal plasticity FEM. 15th International Workshop on Computational Mechanics of Materials, MPI für Eisenforschung, Düsseldorf (2005)
Roters, F.: The 15th International Workshop on Computational Mechanics of Materials (IWCMM 15). The 15th International Workshop on Computational Mechanics of Materials (IWCMM 15), MPIE (2005)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive model for crystal plasticity FEM. 14th International Conference on Textures of Materials (ICOTOM 14), Leuven, Belgium (2005)
Roters, F.; Jeon-Haurand, H. S.; Tikhovskiy, I.; Raabe, D.: A Texture Evolution Study Using the Texture Component Crystal Plasticity FEM. 14th International Conference on Textures of Materials (ICOTOM 14), Leuven, Belgium (2005)
Ma, A.; Roters, F.; Raabe, D.: Introducing the Effect of Grain Boundaries into Crystal Plasticity FEM Using a Non Local Dislocation Density Based Constitutive Model. Theory and Application to FCC Bi-Crystals. Euromech Colloquium 463: Size dependent mechanics of materials, Groningen, Niederlande (2005)
Roters, F.: Development of a dislocation density based constitutive model for crystal plasticity FEM with special regard to grain boundaries. Institutsseminar, MPI für Mathematik in den Naturwissenschaften, Leipzig, Germany (2005)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Grain boundaries (GBs) are regions connecting adjacent crystals with different crystallographic orientations. GBs are a type of lattice imperfection, with their own structure and composition, and as such impact a material’s mechanical and functional properties. Structural motifs and phases formed at chemically decorated GBs can be of a transient…