Roters, F.: Modellierung von Verformungsvorgängen auf Basis der Kristallplastizität. Lecture: DGM Fortbildung Modellierung und Simulation, ICAMS Bochum [Germany], November 18, 2011
Kords, C.: On the role of dislocation transport in the constitutive description of crystal plasticity. Dissertation, RWTH Aachen, Aachen, Germany (2013)
Roters, F.: Advanced material models for the crystal plasticity finite element method - Development of a general CPFEM framework. Habilitation, RWTH Aachen, Fakultät für Georessourcen und Materialtechnik, Aachen, Germany (2011)
Ma, A.; Roters, F.; Raabe, D.: Simulation of textures and Lankford values for face centered cubic polycrystaline metals by using a modified Taylor model. (2004)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Atom probe tomography (APT) is a material analysis technique capable of 3D compositional mapping with sub-nanometer resolution. The specimens for APT are shaped as sharp needles (~100 nm radius at the apex), so as to reach the necessary intense electrostatic fields, and are typically prepared via focused ion beam (FIB) based milling.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.