Mianroodi, J. R.; Svendsen, B.: Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals. Materials 13 (10), 2238 (2020)
Rezaei, S.; Mianroodi, J. R.; Khaledi, K.; Reese, S.: A nonlocal method for modeling interfaces: Numerical simulation of decohesion and sliding at grain boundaries. Computer Methods in Applied Mechanics and Engineering 362, 112836 (2020)
Fernández, M.; Rezaei, S.; Mianroodi, J. R.; Fritzen, F.; Reese, S.: Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior. Advanced Modeling and Simulation in Engineering Sciences 7, 1 (2020)
Rezaei, S.; Jaworek, D.; Mianroodi, J. R.; Wulfinghoff, S.; Reese, S.: Atomistically motivated interface model to account for coupled plasticity and damage at grain boundaries. Journal of the Mechanics and Physics of Solids 124, pp. 325 - 349 (2019)
Mianroodi, J. R.; Hunter, A. G. M.; Beyerlein, I. J.; Svendsen, B.: Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals. Journal of the Mechanics and Physics of Solids 95, pp. 719 - 741 (2016)
Kochmann, J.; Wulfinghoff, S.; Reese, S.; Mianroodi, J. R.; Svendsen, B.: Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior. Computer Methods in Applied Mechanics and Engineering 305, pp. 89 - 110 (2016)
Mianroodi, J. R.; Peerlings, R.; Svendsen, B.: Strongly non-local modelling of dislocation transport and pile-up. Philosopical Magazine A 96 (12), pp. 1171 - 1187 (2016)
Mianroodi, J. R.; Svendsen, B.: Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems. Journal of the Mechanics and Physics of Solids 77, pp. 109 - 122 (2015)
Mianroodi, J. R.; Svendsen, B.: Modeling Dislocation-Stacking Fault Interaction Using Molecular Dynamics. Proceedings of Applied Mathematics and Mechanics 13 (1), pp. 11 - 14 (2013)
Rezaei, S.; Mianroodi, J. R.; Brepols, T.; Wulfinghoff, S.; Reese, S.: An interface model to account for damage and plasticity at grain boundaries. Proceedings of Applied Mathematics and Mechanics, Special Issue: 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) 19 (1), e201900214, (2019)
Mianroodi, J. R.; Peerlings, R.; Svendsen, B.: Strongly versus weakly non-local dislocation transport and pile-up. In: Contributions to the Foundations of Multidisciplinary Research in Mechanics, pp. 2464 - 2465 (Ed. Floryan, E. J.M.). 24th International Congress of Theoretical and Applied Mechanics (ICTAM 2016) - XXIV ICTAM, Montreal, Canada, August 21, 2016 - August 26, 2016. IUTAM (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…