Schneider, A.; Zhang, J.: Orientation relationship between a ferritic matrix and k-phase (Fe3AlCx) precipitates formed during metal dusting of Fe–15Al. Intermetallics 13 (12), pp. 1332 - 1336 (2005)
Zhang, J.; Schneider, A.; Inden, G.: Cementite decomposition and coke gasification in He and H2–He gas mixtures. Corrosion Science 46 (3), pp. 667 - 679 (2004)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Deges, J.; Fischer, R.; Frommeyer, G.; Schneider, A.: Atom probe field ion microscopy investigations on the intermetallic Ni49.5Al49.5Re1 alloy. Surface and Interface Analysis 36, pp. 533 - 539 (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.: Investigation of nucleation mechanisms of recrystallization in warm rolled Fe3Al base alloys. Materials Science Forum 467-470, pp. 75 - 80 (2004)
Schneider, A.; Sauthoff, G.: Iron-Aluminium Alloys with Strengthening Carbides and Intermetallic Phases for High-Temperature Applications. Steel Research International 75, 1, pp. 55 - 61 (2004)
Schneider, A.; Zhang, J.: Metal dusting of ferritic Fe–Al–M–C (M=Ti, V, Nb, Ta) alloys in CO–H2–H2O gas mixtures at 650 °C. Materials and Corrosion 54 (10), pp. 778 - 784 (2003)
Zhang, J.; Schneider, A.; Inden, G.: Effect of Gas Composition on Cementite Decomposition and Coke Formation of Iron. Corrosion Science 45 (2), pp. 281 - 299 (2003)
Fischer, R.; Frommeyer, G.; Schneider, A.: APFIM investigations on site preferences, superdislocations, and antiphase boundaries in NiAl(Cr) with B2 superlattice structure. Materials Science and Engineering A 353, pp. 87 - 91 (2003)
Zhang, J.; Schneider, A.; Inden, G.: Characterisation of the coke formed during metal dusting of iron CO-H2-H2O gas mixtures. Corrosion Science 45, pp. 1329 - 1341 (2003)
Zhang, J.; Schneider, A.; Inden, G.: Coke formation during metal dusting of iron in CO–H2–H2O gas with high CO content. Materials Science and Corrosion 54, pp. 770 - 777 (2003)
Zhang, J.; Schneider, A.; Inden, G.: α-Fe layer formation during metal dusting of iron in CO-H2-H2O gas mixtures. Materials and Corrosion 54, pp. 763 - 769 (2003)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…