Scheu, C.: Designing the functional properties of thermoelectric materials by grain boundary engineering. Workshop on New Horizons in Materials Design, MPIE, Düsseldorf, Germany (2023)
Vega-Paredes, M.; Arenas Esteban, D.; Garzón-Manjón, A.; Scheu, C.: How can electron tomography be used for studying the catalyst degradation of fuel cells. Advanced Electron Nanoscopy Group – Institut Catala de Nanociencia I Nanotecnologia, Bellaterra, Spain (2022)
Aymerich Armengol, R.; Cignoni, P.; Ebbinghaus, P.; Linnemann, J.; Rabe, M.; Tschulik, K.; Scheu, C.; Lim, J.: Electron microscopy insights on the mechanism of morphology/phase transformations in manganese oxides. Institut de Nanociència i Nanotecnologia (ICN2), Bellaterra, Spain (2022)
Scheu, C.: Unravelling secrets of interfaces in renewable energy application. 10th International Workshop on Interfaces, Santiago de Compostela, Spain (2022)
Aymerich Armengol, R.; Cignoni, P.; Ebbinghaus, P.; Rabe, M.; Tschulik, K.; Scheu, C.; Lim, J.: Mechanism of coupled phase/morphology transformation of 2D manganese oxides through Fe galvanic exchange reaction. Chemistry Department Seminar, Kangwon National University, Chuncheon, South Korea (2022)
Scheu, C.: Insight in the structure and stability of (photo)catalysts. Graduiertenkollegs GRK1896 „In situ microsopy with electrons, X-rays and scanning probes: Abschlusssymposium, Erlangen, Germany (2022)
Scheu, C.: Tracing impurities and structural defects in energy materials using advanced scanning transmission electron microscopy and atom probe tomography. Retreat Lotsch Group, Schloss Fürstenried, München, Germany (2022)
Vega-Paredes, M.; Garzón-Manjón, A.; Rivas Rivas, N. A.; Berova, V.; Hengge, K. A.; Gänsler, T.; Jurinsky, T.; Scheu, C.: Ruthenium-Platinum Core-Shell Nanoparticles as durable, CO tolerant catalyst for Polymer Electrolyte Membrane Fuel Cells. 5th International Caparica Symposium on Nanoparticles/Nanomaterials and Applications (ISN2A), Online (accepted)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…