Zhu, L.-F.; Neugebauer, J.; Grabowski, B.: Towards high throughput melting property calculations with ab initio accuracy aided by machine learning potential. CALPHAD L Conference, Cambridge, MA, USA (2023)
Neugebauer, J.; Huber, L.; Körmann, F.; Grabowski, B.; Hickel, T.: Ab initio input for multiphysics models: Accuracy, performance and challenges. ISAM4: The fourth International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics, Erlangen, Germany (2019)
Zhu, L.-F.; Janßen, J.; Grabowski, B.; Neugebauer, J.: Melting parameters from ab initio using the fast statistical sampling TOR-TILD approach: Applications to Al and Ni. CALPHAD XLVIII CONFERENCE, Singapore, Singapore (2019)
Neugebauer, J.; Todorova, M.; Grabowski, B.; Hickel, T.: Modelling structural materials in realistic environments by ab initio thermodynamics. Hume-Rothery Award Symposium, TMS2019 Annual Meeting and Exhibition, San Antonio, TX, USA (2019)
Neugebauer, J.; Janßen, J.; Körmann, F.; Hickel, T.; Grabowski, B.: Exploration of large ab initio data spaces to design materials with superior mechanical properties. Physics and Theoretical Division Colloquium, Los Alamos, NM, USA (2019)
Zhu, L.-F.; Grabowski, B.; Neugebauer, J.: Efficient approach to compute melting properties fully from ab initio with application to Cu. CALPHAD XLVII Conference, Querétaro, México (2018)
Grabowski, B.: Knowledge driven engineering of materials: Development and application of ab initio based scale bridging methods. Seminar at HSU Hamburg, Hamburg, Germany (2018)
Grabowski, B.: Efficient and Accurate Computation of Melting Temperatures and Enthalpies and Entropies of Fusion from Ab Initio. TMS conference, Phoenix, AZ, USA (2018)
Grabowski, B.: Knowledge driven engineering of materials: Development and application of ab initio based scale bridging methods. Seminar at University Stuttgart, Stuttgart, Germany (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).