Ponge, D.: Warmumformbarkeit von Stahl. Lecture: Kontaktstudium Werkstofftechnik Stahl, Teil III, Technologische Eigenschaften, Werkstoffausschuss im Stahlinstitut VDEh, Technische Universität Dortmund, June 22, 2008
Calcagnotto, M.; Ponge, D.; Raabe, D.: Fabrication of ultrafine grained dual phase steels. Lecture: National Institute for Materials Science (NIMS), Tsukuba, Japan, October 22, 2007
Storojeva, L.; Ponge, D.; Raabe, D.: Halbwarmwalzen als ein neues Produktionskonzept für Kohlenstoffstähle. Lecture: Max-Planck Hot Forming Conference, MPI für Eisenforschung GmbH, Düsseldorf, Germany, December 05, 2002
Sam, H. C.: Role of microstructure and environment on delayed fracture in a novel lightweight medium manganese steel. Master, Augsburg University (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…