Kasian, O.; Schweinar, K.; Cherevko, S.; Gault, B.; Mayrhofer, K. J. J.: Correlating Atomic Scale Structure with Reaction Mechanisms: Electrocatalytic Evolution of Oxygen. 70th Annual Meeting of the International Society of Electrochemistry, Durban, South Africa (2019)
Abart, R.; Baldwin, L.; Lintner, M.; Hurai, V.; Huraiova, M.; Schweinar, K.: Mechanisms of lamellar intergrowth in alkali feldspar. Catania 2018, Congress SGI - Simp "Geosciences for the environment, natural hazard and cultural heritage", Catania, Italy (2018)
Schweinar, K.: Advancements in the understanding of Ir-based water splitting catalysts at the near-atomic scale. Dissertation, Ruhr-Universität Bochum (2021)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.