Zhang, S.: Electron Microscopy. DGK-AK20 Summer School “Synthesis and characterization of inorganic functional materials”, Mülheim (Ruhr), Germany (2019)
Scheu, C.; Zhang, S.: Effect of interfaces on the photoelectrochemical performance of functional oxides. PICS3 2019 Meeting, Centre Interdisciplinaire de Nanoscience de Marseille, Marseille, France (2019)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: Photocatalysts, cocatalysts, and a case study on their structural design. 1st International Meeting on Alternative & Green Energies, Mohammedia, Morocco (2018)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: In-situ heating study on the growth of NiOx nanoparticles on photocatalytic supports. International GRK 1896 Satellite Symposium “In Situ Microscopy with Electrons, X-rays and Scanning Probes, Erlangen, Germany (2017)
Mattlat, D. A.; Bueno Villoro, R.; Jung, C.; Scheu, C.; Zhang, S.; Naderloo, R. H.; Nielsch, K.; He, .; Zavanelli, D.; Snyder, G. J.: Effective doping of InSbat the grain boundaries in Nb1-xTixFeSb based Half-Heusler thermoelectricsfor high electrical conductivity and Seebeckcoefficient. 40th International & 20th European Conference on Thermoelectrics, Krakow, Poland (accepted)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.