Tsybenko, H.; Xia, W.; Dehm, G.; Brinckmann, S.: On the commensuration of plastic plowing at the microscale. Nanobrücken 2020: Nanomechanical Testing Conference & Bruker User Meeting, Düsseldorf, Germany (2020)
Duarte, M. J.; Fang, X.; Brinckmann, S.; Dehm, G.: Hydrogen-microstructure interactions in bcc FeCr alloys by in-situ nanoindentation. ECI, Nanomechanical Testing in Materials Research and Development VI, Dubrovnik, Croatia (2017)
Fink, C.; Brinckmann, S.; Dehm, G.: Nanotribology and Microstructure Evolution in Pearlite. 3rd European Symposium on Friction, Wear and Wear Protection, Karlsruhe, Germany (2014)
Brinckmann, S.: Dislocation emission from short penny-shaped cracks: A multiscale model of atomistic & dislocation dynamics. Nanomechanical Testing in Materials Research and Development IV, Olhão (Algarve), Portugal (2013)
Patil, P.: Influence of plastic anisotropy on the deformation behaviour of Austenitic stainless-steel during single micro-asperity wear. Dissertation, Ruhr-Uiversität-Bochum (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.