Schneider, M.; Couzinie, J.-P.; Shalabi, A.; Ibrahimkhel, F.; Ferrari, A.; Koermann, F.; Laplanche, G.: Effect of stacking fault energy on the thickness and density of annealing twins in recrystallized FCC medium and high-entropy alloys. Scripta Materialia 240, 115844 (2024)
Ferrari, A.; Körmann, F.: Design of compositionally complex catalysts: Role of surface segregation. Journal of Materials Research and Technology 14, pp. 1830 - 1836 (2021)
Neugebauer, J.; Körmann, F.; Ferrari, A.: Navigating and exploiting the high-dimensional configuration spaces of high entropy alloys. The 11th International Conference on Multiscale Materials Modeling, Prague, Czech Republic (2023)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.