Sachs, C.; Nikolov, S.; Fabritius, H.; Raabe, D.: Investigation and Modeling of the Elastic Properties of Lobster Cuticle Depending on its Grade of Mineralization. MRS Spring Meeting, San Francisco, CA, USA (2008)
Al-Sawalmih, A.; Romano, P.; Sachs, C.; Raabe, D.: Structure and texture analysis of chitin-bio-nanocomposites using synchrotron radiation. MRS Spring Meeting, San Francisco, CA, USA (2005)
Romano, P.; Al-Sawalmih, A.; Sachs, C.; Raabe, D.; Brokmeier, H. G.: Mesostructure, microstructure and anisotropy of the lobster cuticle. MRS Spring Meeting, San Francisco, CA, USA (2005)
Romano, P.; Raabe, D.; Al-Sawalmih, A.; Sachs, C.; Servos, G.; Hartwig, H. G.: Influence of sample preparation and anisotropy on lobster claw studied by LOM, SEM and TEM. Focus on Microscopy, Jena, Germany (2005)
Sachs, C.: Microstructure and mechanical properties of the exoskeleton of the lobster Homarus americanus as an example of a biological composite material. Dissertation, RWTH Aachen, Aachen, Germany (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…