Li, Y.; Gault, B.: Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography. BiGmax Spring Meeting 2022, Bochum, Germany (2022)
Polin, N.; Giron, S.; Adabifiroozjaei, E.; Yang, Y.; Saxena, A.; Gutfleisch, O.; Gault, B.: Atomic‐scale insights to design of high‐performing SmCo based sintered permanent magnets gained by atom probe tomography. 12th International Conference on Magnetic and Superconducting Materials (MSM22), Duisburg, Germany (2022)
Gault, B.: Pushing the analytical limits of atom probe tomography via cryo-enabled workflows. Microscience Microscopy Congress 2021, online, Oxford, UK (2021)
Gault, B.; Guillon, O.: Du térawatt au picomètre: Voyage au cœur des technologies de l’hydrogène. Café des Sciences de l’Ambassade de France en Allemagne, online, Berlin, Germany (2021)
Gault, B.: Advancing corrosion understanding with (cryo-) Atom Probe Tomography. Imperial College London - Rolls Royce corrosion seminar, online, London, UK (2021)
Gault, B.: Machine-Learning for Atom Probe Tomography. Workshop 'Research-data management, machine learning and material informatics for Superalloys', online, Bochum, Germany (2021)
Gault, B.: Introduction to atom probe tomography: performance and opportunities in characterizing microstructures. Metallic Microstructures: European Lectures Online (2021)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…