Keil, P.; Valtiner, M.; Grundmeier, G.: In-situ XAS investigations of the ZnO(0001)–Zn surface and electrolyte interface during dissolution and as a function of pH. Gordon Research Conference, Science of Adhesion, Colby-Sawyer College, New London, NH, USA (2009)
Möllmann, V.; Keil, P.; Zuo, J.; Itani, H.; Titz, T.; Grundmeier, G.: Structural Characterization of Ag Nanoparticles Embedded in TiO2 Thin Films Prepared by Means of RF-Magnetron Sputtering. AVS fall meeting 2008, Boston, MA, USA (2008)
Itani, H.; Keil, P.; Grundmeier, G.: Silver Nanoparticles Embedded in Layer by Layer Polyelectrolyte Thin Films: Investigation of the Formation and Composition of Silver Nanoparticles. Polyelectrolytes 2008, Coimbra, Portugal (2008)
Valtiner, M.; Keil, P.; Grundmeier, G.: The structure of the ZnO(0001)-Zn surface and interface during acidic dissolution. HASYLAB users' meeting 2007 "Research with Synchrotron Radiation and FELs, Hamburg, Germany (2007)
Möllmann, V.; Keil, P.; Valtiner, M.; Wagner, R.; Lützenkirchen-Hecht, D.; Frahm, R.; Grundmeier, G.: Structural properties of Ag@TiO2 nanocomposites measured by means of refection mode XAS measurements at beamline 8. (2008)
Valtiner, M.; Keil, P.; Grundmeier, G.: In-situ reflection mode XAS measurements of non equilibrium dissolution processes in aqueous electrolytes at beamline E2. (2007)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.