Huemer, K.; Karsten, S.; Balusundaram, K.; Raabe, D.; Hild, S.; Fabritius, H.: Structural organization and mineral distribution in load-bearing exoskeleton parts of the edible crab Cancer pagurus. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Fabritius, H.; Karsten, E. S.; Balasundaram, K.; Hild, S.; Huemer, K.; Raabe, D.: Influence of Structural Organization and Mineral Distribution on the Local Mechanical Properties of Mineralized Cuticle from the Crab Cancer pagurus. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Fabritius, H.; Hild, S.; Raabe, D.: Leg joints of the lobster Homarus americanus as an example of cuticle modification for specific functions: Variations in structure, composition and properties. MRS Fall Meeting 2008, Boston, MA, USA (2008)
Struss, J.; Znidarsic, N.; Ziegler, A.; Hild, S.: Microscopic anatomy and mineral composition of cuticle in amphibious isopods Ligia italica and Titanethes albus (Crustacea:Isopoda). European Microscopy Congeress EMC 2008, Aachen, Germany (2008)
Ziegler, A.; Hild, S.: Distribution and function of amorphous CaCO3 and Calcite within the tergite cuticle of terrestrial isopods (Crustacea). European Microscopy Congeress EMC 2008, Aachen, Germany (2008)
Hild, S.; Ziegler, A.: The isopod cuticle: A model to study formation and function of amorphous calcium carbonate in calcified tissues. European Geosciences Union General Assembly, Vienna, Austria (2008)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.