Peng, Z.; Meiners, T.; Gault, B.; Liebscher, C.; Raabe, D.; Lu, Y.: A Methodology for Investigation of Grain-Boundary Diffusion and Segregation. In: MicroscopyMicroanalysis, Vol. 23, pp. 656 - 657. Microscopy & Microanalysis 2017, St. Louis, MO, USA, August 06, 2017 - August 10, 2017. (2017)
El-Zoka, A.; Kim, S.-H.; Khanchandani, H.; Stephenson, L.; Gault, B.: Advances in Cryo-Atom Probe Tomography Studies on Formation of Nanoporous Metals by Dealloying (Digital Presentation). In ECS Meeting Abstracts, MA2022-01 (47), p. 1983. The Electrochemical Society (2022)
Schwarz, T.; Wieland, F.; Zeller-Plumhoff, B.; Gault, B.: On the trail of Mg - Incorporation and diffusion of Mg into the bone structure during the biodegradation of a MgGd screw. 17th Biometal 2025 Symposium, Cetraro, Italy (2025)
Schwarz, T.; Hsu, Y.-L.; Dumont, M.; Garcia-Giner, V.; Jung, C.; Porter, A.; Gault, B.: Atom Probe Tomography - a new approach to provide new insights into the interfacial reaction at the liquid-solid interface on the atomic scale. Institute Seminar FAU Erlangen-Nuremberg, Department of Materials Science, Erlangen-Nuremberg, Germany (2025)
Schwarz, T.; Hsu, Y.-L.; Dumont, M.; Garcia-Giner, V.; Jung, C.; Porter, A.; Gault, B.: Atom probe tomography – a new technique to understand biominerals/materials on the atomic scale. 8th BioMAT 2025 - Symposium on Biomaterials and Related Areas, Weimar, Germany (2025)
Zhou, X.; Hickel, T.; Gault, B.; Ophus, C.; Liebscher, C.; Dehm, G.; Raabe, D.: Exploring the Relationship Between Grain Boundary Structure and Chemical Composition at the Atomic Level. International Conference on Intergranular and Interphase Boundaries in Materials (IIB 2024), Beijing, China (2024)
Krämer, M.; Favelukis, B.; El-Zoka, A.; Sokol, M.; A. Rosen, B.; Eliaz, N.; Kim, S.-H.; Gault, B.: Compositional mapping of 2D MXenes at the near-atomic-scale by atom probe tomography. EUROMXENE Congress 2024, Valencia, Spain (2024)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…