Herbig, M.; Kumar, A.: Removal of hydrocarbon contamination and oxide films from atom probe specimens. Microscopy Research and Technique 84 (2), pp. 291 - 297 (2021)
Kumar, A.; Dutta, A.; Makineni, S. K.; Herbig, M.; Petrov, R.; Sietsma, J.: In-situ observation of strain partitioning and damage development in continuously cooled carbide-free bainitic steels using micro digital image correlation. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 757, pp. 107 - 116 (2019)
Kwiatkowski da Silva, A.; Inden, G.; Kumar, A.; Ponge, D.; Gault, B.; Raabe, D.: Competition between formation of carbides and reversed austenite during tempering of a medium-manganese steel studied by thermodynamic-kinetic simulations and atom probe tomography. Acta Materialia 147, pp. 165 - 175 (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…