An, D.; Zaefferer, S.: Formation mechanism of dislocation patterns under low cycle fatigue of a high-manganese austenitic TRIP steel with dominating planar slip mode. International Journal of Plasticity 121, pp. 244 - 260 (2019)
Rogowitz, A.; Zaefferer, S.; Dubosq, R.: Direct observation of dislocation nucleation in pyrite using combined electron channelling contrast imaging and electron backscatter diffraction. Terra Nova 30 (6), pp. 423 - 430 (2018)
Nayyeri, G.; Poole, W. J.; Sinclair, C. W.; Zaefferer, S.: Measurement of the critical resolved shear stress for basal slip in magnesium alloys using instrumented indentation. Scripta Materialia 156, pp. 37 - 41 (2018)
An, D.; Griffiths, T. A.; Konijnenberg, P. J.; Mandal, S.; Wang, Z.; Zaefferer, S.: Correlating the five parameter grain boundary character distribution and the intergranular corrosion behaviour of a stainless steel using 3D orientation microscopy based on mechanical polishing serial sectioning. Acta Materialia 156, pp. 297 - 309 (2018)
Archie, F. M. F.; Zaefferer, S.: On variant selection at the prior austenite grain boundaries in lath martensite and relevant micro-mechanical implications. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 731, pp. 539 - 550 (2018)
Breitbarth, E.; Zaefferer, S.; Archie, F. M. F.; Besel, M.; Raabe, D.; Requena, G.: Evolution of dislocation patterns inside the plastic zone introduced by fatigue in an aged aluminium alloy AA2024-T3. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 718, pp. 345 - 349 (2018)
Stechmann, G.; Zaefferer, S.; Raabe, D.: Molecular statics simulation of CdTe grain boundary structures and energetics using a bond-order potential. Modelling and Simulation in Materials Science and Engineering 26 (4), 045009 (2018)
Nayyeri, G.; Poole, W. J.; Sinclair, C. W.; Zaefferer, S.: The role of indenter radius on spherical indentation of high purity magnesium loaded nearly parallel to the c-axis. Scripta Materialia 137, pp. 119 - 122 (2017)
Wang, Z.; Zaefferer, S.: On the accuracy of grain boundary character determination by pseudo-3D EBSD. Materials Characterization 130, pp. 33 - 38 (2017)
Archie, F. M. F.; Li, X. L.; Zaefferer, S.: Micro-damage initiation in ferrite-martensite DP microstructures: A statistical characterization of crystallographic and chemical parameters. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 701, pp. 302 - 313 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…