Meier, J. C.; Hartl, K.; Nesselberger, M.; Arenz, M.; Mayrhofer, K. J. J.: The Particle Size Effect in Electrocatalysis of Fuel Cell Reactions. Electrochemistry 2010, Bochum, Germany (2010)
Meier, J. C.; Hartl, K.; Juhart, V.; Hanzlik, M.; Ashton, S.; Wiberg, G. K. H.; Arenz, M.; Mayrhofer, K. J. J.: Stability of Pt alloy high surface area catalysts. International Conference on Materials for Energy, Karlsruhe, Germany (2010)
Meier, J. C.: Degradation phenomena and design principles for stable and active Pt/C fuel cell catalysts. Dissertation, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.