Lim, J.; Hengge, K. A.; Aymerich Armengol, R.; Gänsler, T.; Scheu, C.: Structural Investigation of 2D Nanosheets and their Assembly to 3D Porous Morphologies. 5th International Conference on Electronic Materials and Nanotechnology for Green Environment (ENGE 2018), Jeju, Korea (2018)
Aymerich Armengol, R.; Lim, J.; Ledendecker, M.; Scheu, C.: Structure-property relationship studies of Pt/TiO2 nanomaterials for electrochemical applications. International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, IAMNano 2019 , Düsseldorf, Germany (2019)
Aymerich Armengol, R.: Structure-property relationship studies of Pt/TiO2 nanomaterials for electrochemical applications. Master, Universitat Autònoma de Barcelona, Spain (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…