Imrich, P. J.; Kirchlechner, C.; Kiener, D.; Dehm, G.: Internal and external stresses: in situ TEM compression of Cu bicrystals containing a twin boundary. Scripta Materialia 100, pp. 94 - 97 (2015)
Kapp, M. W.; Kapp, M. W.; Kirchlechner, C.; Pippan, R.; Dehm, G.: Importance of dislocations pile-ups on the mechanical properties and the Bauschinger effect in micro cantilevers. Journal of Materials Research 30 (6), pp. 791 - 797 (2015)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Can micro-scale fracture tests provide reliable fracture toughness values? A case study in silicon. Journal of Materials Research 30 (5), pp. 686 - 698 (2015)
Heinz, W.; Robl, W.; Dehm, G.: Influence of initial microstructure on thermomechanical fatigue behavior of Cu films on substrates. Microelectronic Engineering 137, pp. 5 - 10 (2015)
Zhang, Z.; Dehm, G.: Study on the Atomic and Electronic Structure in CrN (VN, TiN) Films using Cs-Corrected TEM. Microscopy and Microanalysis 21 (3), pp. 2079 - 2080 (2015)
Rashkova, B.; Faller, M.; Pippan, R.; Dehm, G.: Growth mechanism of Al2Cu precipitates during in situ TEM heating of a HPT deformed Al–3wt.%Cu alloy. Journal of Alloys and Compounds 600, pp. 43 - 50 (2014)
Imrich, P. J.; Kirchlechner, C.; Motz, C.; Dehm, G.: Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary. Acta Materialia 73, pp. 240 - 250 (2014)
Harzer, T. P.; Daniel, R.; Mitterer, C.; Dehm, G.; Zhang, Z. L.: Transmission electron microscopy characterization of CrN films on MgO(001). Thin Solid Films 545, pp. 154 - 160 (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.