Saood, S.; Brink, T.; Liebscher, C.; Dehm, G.: Atomic structure of [111] tilt boundaries of Al in relation to their crystallographic parameters. International Microscopy Conference 2023 (IMC-20), Busan, South Korea (2023)
Brink, T.; Milanese, E.; Frérot, L.; Molinari, J.-F.: Simulation of adhesive wear mechanisms at the nanoscale and an approach towards mesoscale models. MSE Congress, Darmstadt, Germany (2022)
Frommeyer, L.; Brink, T.; Dehm, G.; Liebscher, C.: Atomic scale observations of Ag segregation in a high angle grain boundary in Cu. PICO 2022, Kasteel Vaalsbroek, The Netherlands (2022)
Frommeyer, L.; Brink, T.; Freitas, R.; Frolov, T.; Dehm, G.; Liebscher, C.: Characterization of the atomic structure of grain boundary phases in pure Cu. Sixth Conference on Frontiers of Aberration Corrected Electron Microscopy PICO 2021, vitual, Kasteel Vaalsbroek, The Netherlands (2021)
Brink, T.: Thermodynamics. Lecture: Lecture on Thermodynamics, Max Planck Institut für Eisenforschung (demnächst Max Planck Institute for Sustainable Materials), 4 lectures à 2 h, Düsseldorf, Germany, May 14, 2024 - June 11, 2024
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…