Elhami, N.-N.; Zaefferer, S.; Thomas, I.; Hofmann, H.: Observation of the crystallographic defect structure in lightly deformed TWIP steel by means of electron channeling contrast imaging (ECCI). 1st International Conference on High Manganese Steels (HMnS2011), Seoul, South Korea (2011)
Fanta, A. B.; Zaefferer, S.; Thomas, I.; Raabe, D.: Relationship Between Microstructure and Texture Evolution during Cold Deformation of TWIP-Steels. 15 th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Thomas, I.; Zaefferer, S.; Friedel, F.; Raabe, D.: Orientation dependent growth behaviour of subgrain structures in IF steel. 2nd International Joint Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Thomas, I.: Untersuchung metallphysikalischer und messtechnischer Grundlagen zur Rekristallisation und Erholung mikrolegierter IF Stähle. Dissertation, RWTH Aachen, Aachen, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…