Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Tasnádi, F.; Wang, F.; Alling, B.: Effects of configurational disorder on the elastic properties of icosahedral boron-rich alloys based on B6O, B13C2, and B4C, and their mixing thermodynamics. The Journal of Chemical Physics 144 (13), 134503 (2016)
Sangiovanni, D. G.; Hellman, O.; Alling, B.; Abrikosov, I. A.: Efficient and accurate determination of lattice-vacancy diffusion coefficients via non equilibrium ab initio molecular dynamics. Physical Review B 93 (9), 094305 (2016)
Thore, A.; Dahlqvist, M.; Alling, B.; Rosén, J. A.: Magnetic exchange interactions and critical temperature of the nanolaminate Mn2GaC from first-principles supercell methods. Physical Review B 93 (5), 054432 (2016)
Eklund, P.; Kerdsongpanya, S.; Alling, B.: Transition-metal-nitride-based thin films as novel energy harvesting materials. Journal of Materials Chemistry C 4 (18), pp. 3905 - 3914 (2016)
Thore, A.; Dahlqvist, M.; Alling, B.; Rosén, J. A.: Phase stability of the nanolaminates V2Ga2C and (Mo1-xVx)2Ga2C from first-principles calculations. Physical Chemistry Chemical Physics 18 (18), pp. 12682 - 12688 (2016)
Stockem, I.; Alling, B.: Interdependence of the spin and lattice dynamics of CrN in the high temperature paramagnetic phase. DPG Frühjahrstagung, Dresden, Germany (2017)
Dutta, B.; Körmann, F.; Alling, B.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Interaction of magnetic and lattice degrees of freedom. International Workshop on Ab initio Description of Iron and Steel: Mechanical Properties (ADIS 2016), Ringberg Castle, Tegernsee, Germany (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…