Grundmeier, G.; Fink, N.; Giza, M.; Popova, V.; Vlasak, R.; Wapner, K.: Application of combined spectroscopic, electrochemical and microscopic techniques for the understanding of adhesion and de-adhesion at polymer/metal interfaces. 24. Spektrometertagung, Dortmund, Germany (2005)
Ifeacho, V.: Application of the Chemical Force Microscopy for Analysis of the Molecular Adhesion on α-Al2O3(0001) Interfaces in Aqueous Electrolytes. Dissertation, Universität Paderborn, Paderborn, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Here the focus lies on investigating the temperature dependent fracture of materials down to the individual microstructural length-scales, such as respective phases, grain/phase boundaries or hetero-interfaces, to understand brittle-ductile transitions in deformation and the role of chemistry or crystallography on it.
In this project we work on correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. The task is to image the boron segregation at grain boundaries in the Co-9Al-9W-0.005B alloy.
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.