Sämann, N.: Effects of surface treatment and alloy composition on the high temperature corrosion of chromium steels. Fortschritt-Berichte VDI Zeitschrift, Verein Deutscher Ingenieure 5 (649), pp. 1 - 144 (2002)
Sämann, N.; Spiegel, M.; Grabke, H.-J.: Influence of surface preparation on the corrosion of steels in simulated waste incineration environments. Materials Science Forum 369-372, pp. 963 - 970 (2001)
Grabke, H. J.; Sämann, N.; Müller-Lorenz, E. M.: Improvement of stainless steels for use at elevated temperatures in aggressive environments. In: Technical Steel Research, 1 (Ed. Directorate-General for Research). Directorate-General for Research, Luxembourg, Luxembourg (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Adding 30 to 50 at.% aluminum to iron results in single-phase alloys with an ordered bcc-based crystal structure, so-called B2-ordered FeAl. Within the extended composition range of this intermetallic phase, the mechanical behavior varies in a very particular way.
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.