Lymperakis, L.; Neugebauer, J.: Thermodynamics and adatom kinetics of non-polar GaN surfaces. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Petrov, M.; Lymperakis, L.; Neugebauer, J.; Stefaniuk, R.; Dluzewski, P.: Nonlinear Elastic Effects in Group III-Nitrides: From ab-initio to Finite Element Calculation. 17th International Conference on Computer Methods in Mechanics CMM-2007, Spala, Poland (2007)
Petrov, M.; Lymperakis, L.; Neugebauer, J.; Stefaniuk, R.; Dluzewski, P.: Nonlinear Elastic Effects in Group III-Nitrides: From ab-initio to Finite Element Calculation. 17th International Conference on Computer Methods in Mechanics CMM-2007, Spala, Poland (2007)
Lymperakis, L.; Neugebauer, J.: Ab-initio based multiscale analysis of the 5D configurational space of Grain Boundaries in Aluminum. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Petrov, M.; Lymperakis, L.; Neugebauer, J.: Nonlinear Elastic Effects in Group III-Nitrides. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Marquardt, O.; Wahn, M.; Lymperakis, L.; Hickel, T.; Neugebauer, J.: Implementation and application of a multi-scale approach to electronic properties of group III-nitride based semiconductor nanostructures. Workshop on Nitride Based Nanostructures, Berlin, Germany (2007)
Lymperakis, L.: Ab-initio based multiscale caclulations of Grain Boundaries in aluminum. 1. Harzer Ab initio Workshop, Clausthal-Zellerfeld, Germany (2006)
Lymperakis, L.; Neugebauer, J.: Kinetically stabilized ordering in AlGaN alloys. Institute of Fundamental Technological Research, Polish Academy of Sciences, Colloquium, Warsaw/Poland (2006)
Lymperakis, L.; Neugebauer, J.: Ab-initio based multiscale calculations of low-angle grain boundaries in Aluminum. DPG spring meeting, Dresden, Germany (2006)
Lymperakis, L.: Ab-initio based multiscale calculations of extended defects in condensed matter. Ab initio Description of Iron and Steel (ADIS2006), Ringberg Castle (2006)
Lymperakis, L.; Neugebauer, J.: Electronic properties of non-stoichiometric dislocation cores in GaN. Materials Research Society fall meeting, Boston, MA, USA (2005)
Lymperakis, L.; Neugebauer, J.: The role of strain fields, core structure, and native defects on the electrical activity of dislocations in GaN. The 6th International Conference on Nitride Semiconductors, Bremen (2005)
Lymperakis, L.; Neugebauer, J.: Formation of steps and vicinal surfaces on GaN (0001) surfaces: Implications on surface morphologies and surface roughening. DPG spring meeting, Berlin, Germany (2005)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Limits of Indium Incorporation on In1-xGaxN {0001} III- and N-Polar Surfaces: An Ab Initio Approach. 10th International Conference on Nitride Semiconductors, Washigton DC, USA (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.