Korbmacher, D.; von Pezold, J.; Spatschek, R.: Hydrogen embrittlement - A scale bridging perspective. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2012)
Spatschek, R.; Fleck, M.; Pilipenko, D.; Brener, E.: Brittle fracture in viscoelastic materials as a pattern formation process. EUROMAT, Montpellier, France (2011)
Li, X.; Bottler, F.; Spatschek, R. P.; Scherf, A.; Heilmaier, M.; Stein, F.: Novel Lamellar in situ Composite Materials in the Al-Rich Part of the Fe-Al System. Int. Conf. The Materials Chain: From Discovery to Production, University Bochum, Bochum, Germany (2016)
Monas, A.; Spatschek, R.; Hueter, C.; Tabatabaei, F.; Brener, E. A.: Phase field modeling of phase transitions stimulated by Joule heating. Meeting of the SFB 917, Schleiden, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.