Biedermann, P. U.: Intermediates of the Electrochemical Oxygen Reduction in Aqueous Media. ICAMS-Seminar, Interdisciplnary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Germany (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical Investigation of Electrode Surface Potential Mapping with Scanning Electrochemical Potential Microscopy. The 12th International Scanning Probe Microscopy Conference, Sapporo, Japan (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical Potential microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Biedermann, P. U.: Electrochemical Oxygen Reduction in Aqueous Solution, A DFT Study of the Intermediates. NACE Corrosion 2010, San Antonio, TX, USA (2010)
Biedermann, P. U.: Theoretical Investigation of the Electrochemical Oxygen Reduction Mechanism. Minisymposium "Perspectives in Quantum chemistry for Electrochemistry", Ruhr-Universität Bochum, Germany (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. International Workshops on Surface Modification for Chemical and Biochemical Sensing, Przegorzaly, Poland (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Screening effects in probing the double layer by scanning electrochemical potential microscopy. Comsol European Conference October 2009, Milan, Italy (2009)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Simulation of probing the electric double layer by scanning electrochemical potential microscopy (SECPM). 11th International Fischer Symposium on Microscopy in Electrochemistry, Benediktbeuern, Germany (2009)
Hamou, R. F.; Biedermann, P. U.; Blumenau, A. T.: FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM). SurMat Seminar, Schloß Gnadenthal, Kleve, Germany (2008)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: High density structures of ethyl-thiol SAM´s on Au(111): A DFT study. SurMat Seminar, Schloß Gnadenthal, Kleve, Germany (2008)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: The Role of Gold Adatoms in Self-Assembled Monolayers of Thiol on Au(111). 6th Congress of the International Society for Theoretical Chemical Physics, ISTCP-VI, University of British Columbia, Vancouver, Canada (2008)
Biedermann, P. U.; Blumenau, A. T.: Ab-Initio Calculation of the Standard Hydrogen Electrode Potential and Application to the Mechanism of the Oxygen Reduction. Workshop on Converging Theoretical and Experimental Approaches to Corrosion, MPIE, Düsseldorf, Germany (2007)
Blumenau, A. T.; Biedermann, P. U.; Torres, E.: Modelling adhesion and delamination at oxide/polymer interfaces. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
Biedermann, P. U.; Torres, E.; Blumenau, A. T.: Oxygen Reduction at Thiol/Au(111)SAMs, Atomistic Modelling and Experiment. 212th ECS Meeting, Washington, D.C., USA (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.