Choi, W. S.; De Cooman, B. C.: Effect of Carbon on the Damping Capacity and Mechanical Properties of Thermally Trained Fe–Mn Based High Damping Alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 700, pp. 641 - 648 (2017)
Lee, C. W.; Choi, W. S.; Cho, Y. R.; De Cooman, B. C.: Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel. Metallurgical and Materials Transactions A 47 (6), pp. 2875 - 2884 (2016)
Lee, C. W.; Choi, W. S.; Cho, Y. R.; De Cooman, B. C.: Microstructure evolution of a 55 wt.% Al–Zn coating on press hardening steel during rapid heating. Surface and Coatings Technology 281, pp. 35 - 43 (2015)
Choi, W. S.; De Cooman, B. C.; Sandlöbes, S.; Raabe, D.: Size and orientation effects in partial dislocation-mediated deformation of twinning-induced plasticity steel micro-pillars. Acta Materialia 98, 12304, pp. 391 - 404 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…